60,122 research outputs found

    Contribution of integrated farm management (IFM) to Defra objectives

    Get PDF
    A farming system comprises a complex of interrelated and interacting factors. Any study of an isolated part of the system will not provide adequate understanding of the behaviour of the entire system and interactions may be equally or more important than individual components. There is therefore a requirement for the development of integrated approaches and practices to help farming systems adapt to, eliminate or reduce the negative impacts of production on the environment. This must be achieved whilst maintaining the economic viability of the farm enterprise. Our analysis has confirmed that IFM techniques generally have far more beneficial than adverse effects on current Defra policy objectives. However, there are some notable ‘conflicts’ where a technique that has a large beneficial effect in one policy area has a large negative effect in another. Carbon footprinting is used to quantify the impact of some integrated farming practices

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    Analysis and preliminary design of optical sensors for propulsion control

    Get PDF
    A fiber-optic sensor concept screening study was performed. Twenty sensor subsystems were identified and evaluated. Two concepts selected for further study were the Fabry-Perot fiber-optic temperature sensor and the pulse-width-modulated phosphorescent temperature sensor. Various designs suitable for a Fabry-Perot temperature sensor to be used as a remote fiber-optic transducer were investigated. As a result, a particular design was selected and constructed. Tests on this device show that spectral peaks are produced from visible white light, and the change in wavelength of the spectral peaks produced by a change in temperature is consistent with theory and is 36 nm/C for the first order peak. A literature search to determine a suitable phosphor for implementing the pulse-width-modulated fiber optic temperature sensor was conducted. This search indicated that such a device could be made to function for temperatures up to approximately 200 C. Materials like ZnCdS and ZnSe activated with copper will be particularly applicable to temperature sensing in the cryogenic to room temperature region. While this sensing concept is probably not applicable to jet engines, the simplicity and potential reliability make the concept highly desirable for other applications

    Comparison of Compression Schemes for CLARA

    Full text link
    CLARA (Compact Linear Advanced Research Accelerator)at Daresbury Laboratory is proposed to be the UK's national FEL test facility. The accelerator will be a ~250 MeV electron linac capable of producing short, high brightness electron bunches. The machine comprises a 2.5cell RF photocathode gun, one 2 m and three 5 m normal conducting S-band (2998MHz) accelerating structures and a variable magnetic compression chicane. CLARA will be used as a test bed for novel FEL configurations. We present a comparison of acceleration and compression schemes for the candidate machine layout.Comment: 3 pages, 5 figures, IPAC 201

    General Relativity and Gravitation: A Centennial Perspective

    Full text link
    To commemorate the 100th anniversary of general relativity, the International Society on General Relativity and Gravitation (ISGRG) commissioned a Centennial Volume, edited by the authors of this article. We jointly wrote introductions to the four Parts of the Volume which are collected here. Our goal is to provide a bird's eye view of the advances that have been made especially during the last 35 years, i.e., since the publication of volumes commemorating Einstein's 100th birthday. The article also serves as a brief preview of the 12 invited chapters that contain in-depth reviews of these advances. The volume will be published by Cambridge University Press and released in June 2015 at a Centennial conference sponsored by ISGRG and the Topical Group of Gravitation of the American Physical Society.Comment: 37 page

    Magnetoplasma sheath waves on a conducting tether in the ionosphere with applications to EMI propagation on large space structures

    Get PDF
    A recent space experiment confirmed sheath-wave propagation of a kilometer-long insulated wire in the ionosphere, oriented parallel to the Earth's magnetic field. This space tether experiment, Oedipus-A, showed a sheath-wave passband up to about 2 MHz and a phase velocity somewhat slower than the velocity of light in a vacuum, and also demonstrated both ease of wave excitation and low attenuation. The evidence suggests that, on any large structure in low Earth orbit, transient or continuous wave electromagnetic interference, once generated, could propagate over the structure via sheath waves, producing unwanted signal levels much higher than in the absence of the ambient plasma medium. Consequently, there is a need for a review of both electromagnetic interference/electromagnetic compatibility standards and ground test procedures as they apply to large structures in low Earth orbit

    Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.

    Get PDF
    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought

    Quark confinement and color transparency in a gauge-invariant formulation of QCD

    Get PDF
    We examine a nonlocal interaction that results from expressing the QCD Hamiltonian entirely in terms of gauge-invariant quark and gluon fields. The interaction couples one quark color-charge density to another, much as electric charge densities are coupled to each other by the Coulomb interaction in QED. In QCD, this nonlocal interaction also couples quark color-charge densities to gluonic color. We show how the leading part of the interaction between quark color-charge densities vanishes when the participating quarks are in a color singlet configuration, and that, for singlet configurations, the residual interaction weakens as the size of a packet of quarks shrinks. Because of this effect, color-singlet packets of quarks should experience final state interactions that increase in strength as these packets expand in size. For the case of an SU(2) model of QCD based on the {\em ansatz} that the gauge-invariant gauge field is a hedgehog configuration, we show how the infinite series that represents the nonlocal interaction between quark color-charge densities can be evaluated nonperturbatively, without expanding it term-by-term. We discuss the implications of this model for QCD with SU(3) color and a gauge-invariant gauge field determined by QCD dynamics.Comment: Revtex, 23 pages; contains additional references with brief comments on sam
    • …
    corecore